

РЕПРЕЗЕНТАЦИЯ ХИМИЧЕСКОГО ЗНАНИЯ И ОБУЧЕНИЕ ХИМИИ

Трудность изучения химии связана с тем, что учащиеся должны уметь представлять в своем сознании некие образы, модели, на основе которых они смогут выполнять многие мыслительные операции. Эти образы могут быть отражениями реальных объектов и процессов, веществ и химических реакций, репрезентацией их внешнего вида, запаха, вкуса, изображений этих объектов (рисунков, слайдов, фильмов), материальных и знаковых моделей, отражающих существенные стороны реальных объектов. Для иллюстрации рассмотрим образы, необходимые для формирования представления об уксусной кислоте. Часть формируемых образов относится к макроуровню, а часть к микроуровню. Поскольку мышление человека является словесно опосредованным, то каждый из невербальных образов должен формироваться в паре с соответствующим словесным. В таблице мы воспользовались этой возможностью, отразив словесные образы в знаковой (буквы) и аудиальной (слова) формах. При формировании представления об уксусной кислоте желательны следующие образы (табл. 1).

Образы, составляющие представление об уксусной кислоте

Таблица 1

Образ	Знаковый (дигитальный)	Аудиальный	Визуальный	Чувственный
макромир	СН₃СООН	уксусная кислота, этановая кислота	прозрачные кристаллы ледяной уксусной кислоты и ее водные растворы	характерный запах уксусной кислоты, ее кислый вкус, чувство жжения от попадания кислоты на кожу
микромир	СН₃СООН	Молекула уксусной кислоты	н—с—с	Мышечные, тактильные ощущения от работы с моделями молекулы уксусной кислоты

Внимание нужно обращать на то, в каких репрезентативных системах учебная информация отражается в сознании учащихся [1]. Задачей учителя является организация деятельности учащихся, направленной на формирование соответствующих образов в их сознании и связывание их в единое представление об изучаемом объекте. Элементами такой деятельности могут быть:

- использование вспомогательных рисунков развитие способности к визуальной репрезентации химической информации;
- химический эксперимент, конструирование и учебная деятельность с материальными моделями усиление кинестетической составляющей информации;
 - проговаривание вслух улучшение аудиального восприятия;
- составление таблиц развитие умения системного рассмотрения, поиска взаимосвязей между изучаемыми явлениями;
 - создание алгоритмов развитие умения обобщать умственные и практические действия;
- определение понятий развитие умения выделять главное, существенное, переводить информацию из одной формы в другую.

Среди формируемых образов, составляющих представление об изучаемых объектах и явлениях, имеются опорные, которые соответствуют ведущей репрезентативной системе. На основе этих опорных образов формируются все остальные. Для аудиалов опорными образами являются аудиальные, для кинестетиков — кинестетические, для визуалов — визуальные, а для дигиталов — дигитальные. Поэтому в зависимости от того, какой учащийся перед нами, объяснение необходимо начинать с постановки опорного образа. Выбор опорной формы представления определяется при групповой работе по ведущей модальности большей части учащихся (табл. 2).

Примерная последовательность построения внутренних образов

Визуалы	Кинестетики	Аудиалы	Дигиталы
1. Картинка	1. Кинест. образ	1. Определение	1. Формула
2. Кинест. образ	2. Картинка	2. Формула	2. Определение
3. Формула	3. Определение	3. Кинест. образ	3. Картинка
4. Определение	4. Формула	4. Картинка	4. Кинест. образ

Полученные результаты нашли подтверждение в экспериментальном исследовании с участием 223 учащихся экспериментальных и 503 учащихся контрольных школ. Вместе с тем мы полагаем, что необходимо более детальное изучение данной проблемы.

Библиографический список

1. Мусенова Э.А. Диагностика индивидуальных стилей мышления учащихся: методическое пособие / Э.А. Мусенова, М.А. Ахметов. – Ульяновск: УИПКПРО, 2008. – 28 с.

Н.П. Безрукова г. Красноярск <u>bezrukova@kspu.ru</u>

МАТЕРИАЛЫ ПРОЕКТА «ИНФОРМАТИЗАЦИЯ СИСТЕМЫ ОБРАЗОВАНИЯ» В ПОВЫШЕНИИ КАЧЕСТВА ОБУЧЕНИЯ ХИМИИ

В соответствии с реалиями сегодняшнего дня категория "новое качество образования" означает изменение представлений субъектов дидактико-воспитательного процесса о результатах и условиях образования, что связано в первую очередь с переориентацией образования на применение знаний, а не на само знание (требование производства и рынка труда), активным использованием инновационных образовательных технологий (требования времени), ценностью непрерывного образования (умение учиться с целью быстро получить новую квалификацию).

В контексте проблем, характерных для химического образования на данном этапе, повышению его качества будет способствовать внедрение инновационных технологий обучения, основанных на идеях:

- гуманизации, индивидуализации и дифференциации обучения, которые обеспечивают личностно-ориентированный подход к обучаемому, возможность выбора своей траектории изучения предмета;
- на идеях открытого и активного информационного взаимодействия между обучаемым и различными источниками информации;
 - активной самостоятельной познавательной деятельности обучаемых.

К таким технологиям в полной мере относятся ИКТ, технологии и методы проблемного обучения. Данная статья посвящена обсуждению возможностей применения для повышения качества обучения химии материалов, разработанных в рамках крупномасштабного проекта «Информатизация системы образования» (Проект ИСО), реализованного в России в 2005–2008 годы под эгидой Национального фонда подготовки кадров при финансовой поддержке Международного банка реконструкции и развития.

В структуру Проекта ИСО входили следующие компоненты:

- компонент А. Учебные материалы нового поколения;
- компонент В. Профессиональное развитие педагогов в области применения ИКТ для целей образования;
 - компонент С. Создание системы межшкольных методических центров.

В рамках Проекта проводились работы в области развития и уточнения терминологического аппарата, связанного с информатизацией образования. В частности, введено понятие «цифровой